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We present a uniform asymptotic expansion of the wobbling kink to any order in the amplitude of the
wobbling mode. The long-range behavior of the radiation is described by matching the asymptotic expansions
in the far field and near the core of the kink. The complex amplitude of the wobbling mode is shown to obey
a simple ordinary differential equation with nonlinear damping. We confirm the t−1/2-decay law for the ampli-
tude, which was previously obtained on the basis of energy considerations.
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I. INTRODUCTION

Since the early 1960s, the one-dimensional �4 theory has
been among the most heavily utilized models of statistical
mechanics and condensed-matter physics �1�. At the same
time, it served as a testing ground for a variety of ideas in
topological quantum field theory �2� and cosmology �3�. The
equation of motion for the model reads

1

2
�tt −

1

2
�xx − � + �3 = 0, �1�

and the fundamental role in applications is played by its kink
solution,

��x,t� = tanh x . �2�

The �4 kinks describe domain walls in ferromagnets �4� and
ferroelectrics �5–7�, and represent elementary excitations in
the corresponding partition function �7�. They were em-
ployed to model proton transport in hydrogen-bonded chains
�8� and charge-density waves in polymers and some metals
�9,10�. Topological defects described by kinks are generated
in large numbers during second-order phase transitions �11�;
such transitions occur in a variety of condensed-matter sys-
tems and are believed to have been made by different parts
of the early universe �3�. In quantum field theory, kinks rep-
resent nonperturbative classical solutions that undergo sub-
sequent quantization �12�; one example concerns “bags” con-
taining fermions �13�. �For more recent quantum physics
applications, see �14�.�

Mathematically, the �4 kink has a lot in common with its
sine-Gordon counterpart; the two kinks are the simplest ex-
amples of topological solitons in one dimension. There is an
important difference though; the sine-Gordon equation is in-
tegrable whereas the �4 theory is not. Accordingly, the kink-
antikink interaction becomes a nontrivial matter in the �4

case �6,15,16�. Another �not unrelated� difference is that, un-
like the kink of the sine-Gordon equation, the �4 kink has an
internal mode—an extra degree of freedom that allows for

oscillations in the width of the kink. Although these oscilla-
tions are accompanied by the emission of radiation �another
manifestation of the nonintegrability of the �4 model�, the
radiation is quite weak and the oscillations are sustained over
long periods of time. Since the amplitude of the oscillations
can be fairly large, this periodically expanding and contract-
ing kink �termed wobbling kink in literature, or simply wob-
bler� can be regarded as one of the fundamental nonlinear
excitations of the �4 theory, on a par with the nonoscillatory
kinks and breathers. For small oscillation amplitudes and on
short-time intervals, the wobbler can be characterized simply
as a linear perturbation of stationary kink �2�. However in
order to determine the lifetime of this particlelike structure
�even when its amplitude is small�, or characterize it when it
is a large-amplitude excitation, one needs a self-consistent
fully nonlinear description.

The wobbling kink was discovered in the early numerical
experiments of Getmanov �16� who interpreted it as a bound
state of three fundamental �i.e., nonoscillatory� kinks. �For a
more recent series of numerical simulations, see �17�.� Rice
and Mele have reobtained this nonlinear excitation within a
variational approach employing the width of the kink as a
dynamical variable �10,18�. Segur then constructed the qui-
escent �i.e., nonpropagating� wobbler as a regular perturba-
tion expansion in powers of the oscillation amplitude �19�.
He calculated the first two orders of the perturbation series
and noted the likely occurrence of unbounded terms at the
third ��3-� order, implying the consequent breakdown of the
expansion. His construction was extended in Ref. �20� where
the effect of the wobbling on the stationary component of the
kink was evaluated. It is also appropriate to mention Ref.
�21� where its author derived an expression for the radiation
wave emitted by an initially nonradiating wobbler, and a se-
ries of publications �22� where the interaction of the wobbler
with radiation waves was studied in more detail and from a
variety of perspectives. From the fact that the energy of the
wobbling kink is quadratic in the amplitude of the wobble
while the second-harmonic radiation flux is quartic, it is
straightforward to conclude that the amplitude decays as t−1/2

�21,23,24�.
Moving on to singular perturbation expansions, Kiselev

�25� studied the perturbed �4 kink using the Krylov-
Bogoliubov-Mitropolskii method. �Later, he extended his
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analysis to the �4 equation with a conservative autonomous
perturbation �26�.� His two papers have mathematical rigor
and a wealth of useful formulas; however a self-consistent
system of equations for the kink’s parameters was not de-
rived in �25,26� and the long-term evolution of the wobbling
kink has, therefore, remained unexplored. Manton and Mera-
bet �24� used the Lindstedt-Poincaré method �27�, where the
expansion of the field is supplemented by an expansion of
the frequency of the wobbling. Manton-Merabet’s theory
was successful in reproducing the decay law of the wobbling
amplitude �which was previously obtained from the energy
considerations �21,23,24��. However, the Lindstedt-Poincaré
method, although efficient in finding periodic orbits, may
lead to erroneous conclusions about nonperiodic regimes
�27�. �One manifestation of this inadequacy in the case at
hand is that the nonlinear corrections to the frequency be-
come complex and time dependent �24�; a less obvious dif-
ficulty is the infinite speed of the signal propagation, see
below.� This motivates the search for new approaches that
would be mathematically self-consistent �like the one in
�25,26�� on the one hand, and preserve the physical insights
of phenomenological expansions �21,24� on the other.

The aim of the present paper is to develop a singular
perturbation expansion of this kind. Our approach recognizes
the existence of a hierarchy of space and time scales associ-
ated with the kink+radiation system, and generates a pertur-
bative expansion that remains uniform to all orders. The con-
sistent treatment of radiation requires also the introduction of
an independent expansion of the far field, which is then
matched to the expansion near the core of the kink. This
produces physically consistent and asymptotically accurate
results at all space and time scales. In particular we will
obtain a nonlinear ordinary differential equation obeyed by
the amplitude of the wobbling mode. In the follow-up paper
�28� our multiscale approach will be used for the analysis of
the wobbling kink driven by a resonant force.

The basics of our method are outlined in the next section.
In Secs. III and IV we evaluate the first- and second-order
corrections to the shape of the wobbling kink, and in Sec. VI
we derive an equation for the amplitude of the wobbling
mode. The asymptotic matching of the radiation on the short
and long scales is carried out in Sec. V; here we show, in
particular, how to account for finite propagation speed of
radiation in a mathematically consistent way. Finally, conclu-
sions of this study are summarized in Sec. VII.

II. METHOD

We consider the kink moving with the velocity v. Making
the change of variables �x , t�→ �� ,��, where

� = x − �
0

t

v�t�� dt�, � = t ,

we transform Eq. �1� to the comoving frame,

1

2
��� − v��� −

v�

2
�� −

1 − v2

2
��� − � + �3 = 0. �3�

Like the authors of �29�, we shall determine the kink’s ve-
locity v��� by imposing the condition that the kink be always
centered at �=0 �i.e., at x=�0

t v�t��dt��.

At first glance, the inclusion of the function v�t� is unnec-
essary: having constructed a quiescent wobbling kink, we
could make it move at any speed simply by a Lorentz boost.
The reason we have introduced the velocity explicitly in Eq.
�3� is twofold. Firstly, this will allow us to check whether the
wobbling kink can drift with a nonconstant velocity. The
soliton moving with a variable v�t� could obviously not be
Lorentz transformed to the rest frame. Secondly, we include
the velocity in preparation for the analysis of the damped-
driven �4 equation in the second part of this project �28�.
Since the damping and driving terms violate relativistic in-
variance, the explicit introduction of the velocity becomes
essential even when considering the damped-driven wob-
blers moving at a constant speed.

We expand the field about the kink �0� tanh �,

� = �0 + ��1 + �2�2 + ¯ . �4�

Here � is a �formal� small parameter; it will drop out of the
final expression for the solution �see Eq. �48� below�. Sub-
stituting Eq. �4� in Eq. �3� and setting to zero coefficients of
like powers of � would constitute Segur’s approach, which is
expected to produce secular terms in the expansion �19�. To
avoid these, we introduce a sequence of stretched space and
time variables

Xn � �n�, Tn � �n�, n = 0,1,2, . . . , �5�

which describe slower times and longer distances. In the
limit �→0, the different scales become uncoupled and may
be treated as independent variables. We expand the � and �
derivatives in terms of the scaled variables by using the
chain rule,

�

��
= �0 + ��1 + �2�2 + ¯ ,

�

��
= D0 + �D1 + �2D2 + ¯ , �6�

where we have used the standard short-hand notation

�n �
�

�Xn
, Dn �

�

�Tn
.

Substituting these expansions into �4 equation �3�, along
with series �4�, and equating coefficients of like powers of �,
we obtain a hierarchy of equations. We assume that the ve-
locity of the kink is slowly varying and that, for simplicity, it
is small, i.e., v=�V, where V=V�T1 ,T2 , . . .� is of order one.

III. LINEAR PERTURBATIONS

At O��1�, we obtain the linearization of Eq. �1� about the
kink �0=tanh X0,

1

2
D0

2�1 + L�1 = 0, �7�

where we have introduced the Schrödinger operator

L = −
1

2
�0

2 − 1 + 3�0
2 = −

1

2
�0

2 + 2 − 3 sech2 X0. �8�
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The general solution of the variable-coefficient Klein-
Gordon equation �7� can be written as

�1 = C yT�X0� + Aei�0T0 yw�X0� + c.c. + �R�X0,T0� , �9�

with

�R = �
−�

�

�R�p�ei� �p�T0 + R��− p�e−i� �p�T0� yp�X0� dp .

�10�

Here yT and yw are eigenfunctions of the operator L associ-
ated with eigenvalues 0 and 3

2 , respectively,

yT �X0� = sech2 X0, �11�

yw�X0� = sech X0 tanh X0. �12�

The eigenfunction yw gives the spatial profile of the so-called
internal mode, also known as the wobbling mode in the cur-
rent context. The internal mode frequency �0=�3. The func-
tions yp�X0� are solutions pertaining to the continuous spec-
trum of L,

Lyp = 	2 +
p2

2

yp, − � � p � � . �13�

These were constructed by Segur �19�,

yp�X0� = eipX0 �1 +
3�1 − ip�

1 + p2 tanh X0�1 + tanh X0�

−
3�2 − ip�

4 + p2 �1 + tanh X0�2� . �14a�

We also mention an equivalent form for these solutions,

yp�X0� =
1

�1 + ip��2 + ip�
eipX0

��2 − p2 − 3ip tanh X0 − 3 sech2 X0� . �14b�

The continuous spectrum solutions are usually referred to as
phonon modes; the phonon frequencies ��p� are given by
��p�=�4+ p2	0. Finally, the coefficients R�p� and A are
complex, C0 is real, and c.c. in Eq. �9� stands for the com-
plex conjugate of the immediately preceding term.

The yT eigenfunction is the translation mode; since the
kink is assumed to be centered at X0=0, we let C=0. Next,
we will consider only localized perturbations of the kink, i.e.,
we assume that �1→0 as X0→�. This means that the Fou-
rier coefficient R�p� in integral �10� can be regarded as an
ordinary function, i.e., it does not include any 
-function
contributions. Sending T0→� for the fixed finite X0,
Kelvin’s formula of the method of stationary phase gives

�R�X0,T0� → 	4�

T0

1/2

R�0� y0�X0� e2iT0+i�/4 + c.c.

Therefore, �R is a slowly decaying wave packet, which will
be dominated by the zero-wavenumber radiation after other
harmonics have dispersed away.

Since we are interested in the evolution of the wobbling
mode and not that of a general localized initial condition, we

set R�p�=0. Therefore, the first-order perturbation is taken
in the form

�1 = A�X1, . . . ;T1, . . .� sech X0 tanh X0 ei�0T0 + c.c.

�15�

The amplitude of the wobbling mode A is constant with re-
spect to X0 and T0 but may depend on slower times and
longer distances.

IV. QUADRATIC CORRECTIONS

At the second order in the perturbation expansion, we
arrive at a nonhomogeneous variable-coefficient Klein-
Gordon equation

1

2
D0

2�2 + L�2 = F2�X0, . . . ;T0, . . .� , �16�

where the forcing term is

F2 = ��0�1 − D0D1��1 − 3�0�1
2 + VD0�0�1

+
1

2
D1V�0�0 −

1

2
V2�0

2�0. �17a�

Substituting for �0 and �1, this becomes

F2 = − 6A2sech2 X0 tanh3 X0 +
1

2
D1V sech2 X0

+ V2 sech2 X0 tanh X0 + ��1A�2 sech3 X0

− sech X0� − i�0 D1A sech X0 tanh X0

+ i�0VA�2 sech3 X0 − sech X0�� ei�0T0 + c.c.

− 3A2 sech2 X0 tanh3 X0 e2i�0T0 + c.c. �17b�

The T0-independent term in Eq. �17b� and the term propor-
tional to ei�0T0 are resonant with the two discrete eigenmodes
of the operator in the left-hand side of Eq. �16� while the
term proportional to e2i�0T0 is resonant with its continuous
spectrum. The latter part of the forcing is localized in the
region near the origin and acts as a source of radiation, which
spreads outward from there.

We discard the homogeneous solution of Eq. �16� for the
same reason as we have discarded most terms in the solution
of Eq. �7�; namely, we do not want the evolution of the
wobbling mode to be shaded by dispersive transients. Hence
the solution that is of interest to us will consist only of the
harmonics present in Eqs. �17�,

�2 = �2
�0� + �2

�1�ei�0T0 + c.c. + �2
�2�e2i�0T0 + c.c., �18�
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where �2
�0�, �2

�1�, and �2
�2� are functions of X0 that satisfy the

three linear nonhomogeneous equations,

L�2
�0� = − 6A2sech2 X0 tanh3 X0

+
1

2
D1V sech2 X0 + V2 sech2 X0 tanh X0, �19�

	L −
3

2

�2

�1� = �1A�2 sech3 X0 − sech X0�

− i�0 D1A sech X0 tanh X0

+ i�0VA�2 sech3 X0 − sech X0� , �20�

and

�L − 6��2
�2� = − 3A2 sech2 X0 tanh3 X0. �21�

�The functions �2
�0�, �2

�1�, and �2
�2� can also depend, parametri-

cally, on X1 ,X2 , . . . and T1 ,T2 , . . ..�
The homogeneous solutions of the first two of these equa-

tions are given by the eigenfunctions of the operator L, Eqs.
�11� and �12�. According to the Fredholm alternative, the
nonhomogeneous equations admit bounded solutions if and
only if their right-hand sides are orthogonal to the corre-
sponding homogeneous solutions. For this to be the case, we
must set D1V=0 and D1A=0. The variation of parameters
yields then

�2
�0� = 2A2sech2 X0 tanh X0 + 	V2

2
− 3A2
X0 sech2 X0,

�22�

and

�2
�1� = − ��1A + i�0VA�X0 sech X0 tanh X0. �23�

Although the function �2
�1� decays to zero as X0→�, the

product ��2
�1� becomes greater than the first-order perturba-

tion y1�X0� for each fixed � and sufficiently large X0. Con-
sequently, the term �2�2 in expansion �4� becomes greater
than the previous term, �1�1, leading to nonuniformity of the
expansion. In order to obtain a uniform expansion, we set
this “quasisecular” term to zero,

�1A + i�0VA = 0, �24�

whence

A = Ã�X2,X3, . . . ;T2,T3, . . .�e−i�0VX1. �25�

We also note the terms proportional to X0 sech2 X0 in Eq.
�22�. These terms do not grow bigger than the previous term,
�0=tanh X0, yet they become larger than the difference
�0−1 as X0→� and �0+1 as X0→−�. If we attempted to
construct the asymptotic expansion of the function �−1 at
the right infinity or the function �+1 at the left infinity, the
terms in question would cause nonuniformity of these expan-
sions. Since the function X0 sech2 X0 is nothing but the de-
rivative of tanh�kX0� with respect to k, these terms represent
the variation in the kink’s width. Hence the potential nonuni-
formity of the expansion can be avoided simply by incorpo-
rating them in the variable width �see Eq. �48� below�.

We now turn to the remaining nonhomogeneous equation
�Eq. �21��. The variation of parameters gives

�2
�2� = A2f1�X0� , �26�

with

f1�X0� =
1

8
�6 tanh X0 sech2 X0

+ �2 + ik0 tanh X0 + sech2 X0��J2
��X0� − J2

�� eik0X0

+ �2 − ik0 tanh X0 + sech2 X0� J2�X0�e−ik0X0� . �27�

Here the function J2�X0� is defined by the integral

J2�X0� = �
−�

X0

eik0� sech2 � d� , �28�

with k0=�8. The constant J2
� is the asymptotic value of

J2�X0� as X0→�,

J2
� = lim

X0→�
J2�X0� . �29�

The two constants of integration were chosen such that so-
lution �26�–�27� describes right-moving radiation for positive
X0 and left-moving radiation for negative X0. It is not diffi-
cult to show that f1 is an odd function; we will use this fact
in what follows.

V. RADIATION IN THE FAR FIELD

Function �26� is bounded but does not decay to zero as
X0→�. This fact presents a problem, both for the consis-
tency of our method and for the physical interpretation of the
resulting solution. Mathematically, the term �2�2 turns out to
be greater than the previous term in expansion �4� for suffi-
ciently large X0. As we have mentioned in connection with
the term �2

�1�, this leads to nonuniformity of the expansion.
Physically, the problem is that any variation in the amplitude
of the wobbling mode A on the time scale T2 will result in a
simultaneous change in the amplitude of the radiation tail for
all values of X0 from the origin to the plus and minus infini-
ties. This is obviously in contradiction with the finiteness of
the velocity of signal propagation in a relativistic theory
�which is bounded by 1 in the dimensionless units of Eq.
�1��.

The problem stems from the fact that Eq. �16� and, there-
fore, Eq. �21�, were obtained under the assumption that, in
expansion �4�, the second term is smaller than the first one,
the third one is smaller than the second, and so on—more
precisely, that ��1 /�0→0, �2�2 / ���1�→0, and so on, as �
→0. This assumption turns out to be only valid on the short
scale, and therefore, Eq. �21� is only meant to hold for dis-
tances X0=O�1� but not X0=O��−1� or longer. The interval of
X0 where ��n+1 /�n→0 as �→0 will be referred to as the
“inner” region in what follows. Equations �16� and �21� are,
therefore, valid in the inner region.

To obtain a uniform expansion on the whole axis, we also
consider two “outer” regions—one with X0	0 and the other
one with X0�0. We define the outer regions by the require-
ment that X0 be greater than 1

2 ln �−1. Note that the outer
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regions overlap with the inner region. For example, the val-
ues X0= 

2
3 ln �−1 are obviously in the outer regions; on the

other hand, we have ��1 /�0→0, �2�2 / ���1�→0, etc. for
these X0 and so they belong to the inner region as well.

In the right outer region, we expand � in the power series

� = 1 + �2�2 + �4�4 + ¯ , �30a�

and in the left outer region, we let

� = − 1 + �2�2 + �4�4 + ¯ . �30b�

Substituting these, together with expansion �6�, in Eq. �3�,
the order �2 gives

1

2
D0

2�2 + L�2 = 0,

where L=− 1
2�0

2+2 is the far-field asymptotic form of opera-
tor �8�. The solutions of this equation in the right and left
outer regions are, respectively,

�2 = J B+ ei��+T0−k+X0� + c.c., �31a�

and

�2 = − J B− ei��−T0−k−X0� + c.c., �31b�

where �
2 =k

2 +4, and the amplitudes B are functions of
the “slow” variables: B=B�X1 , . . . ;T1 , . . .�. The normal-
ization constant J will be chosen at a later stage, and the
negative sign in front of B− is also introduced for later con-
venience.

Equations �31� should be matched to the solution in the
inner region �Eq. �18�� with coefficients as in Eqs. �22�, �23�,
and �26�. To this end, we take the values X0= 

2
3 ln �−1

�which, as we remember, belong to the overlap regions�. For
these X0, we have X1=O�� ln �−1�, X2=O��2 ln �−1� , . . .,
and so X1→0, X2→0, . . ., as �→0. Solutions �31� become,
in this limit:

�2 =  J B�0,0, . . . ;T1,T2, . . .�ei��T0−kX0� + c.c.

On the other hand, letting X0= 2
3 ln �−1 and sending �→0 in

Eqs. �22�, �23�, and �26�, we get

�2 =  �2 − ik0� J2
�A2�0,0, . . . ;T2,T3, . . .� ei�2�0T0�k0X0� + c.c.,

where the top and bottom signs pertain to the positive and
negative X0, respectively. Choosing J= �2− ik0�J2

� and equat-
ing the above two expressions, we obtain �=2�0, k

= k0, and

B�0,0, . . . ;T1,T2, . . .� = A2�0,0, . . . ;T2,T3, . . .� . �32�

Equation �32� can be regarded as the boundary conditions for
the amplitude fields B+ and B−. Equations governing the evo-
lution of these functions of slow variables can be derived at
higher orders of the �outer� perturbation expansion. Namely,
the solvability condition at the order �3 yields

��0�1 − D0D1 + V�0D0��2 = 0. �33�

Substituting from Eq. �31�, this becomes

D1B +
k

2�0
�1B + ikVB = 0, �34�

whence

B = e−2i�0VX1 B�X1,X2, . . . ;T1,T2, . . .� , �35�

where B satisfy a pair of linear transport equations

D1B+ + c0�1B+ = 0, X1 	 0, �36a�

D1B− − c0�1B− = 0, X1 � 0, �36b�

with c0=k0 / �2�0�. Note that c0 is nothing but the group ve-
locity of the radiation waves with the wavenumber k0: c0
= �d� /dk� k=k0

, where �=�4+k2.
Solution of Eq. �36� with boundary condition �32� is a

textbook exercise. Assume that the functions B satisfy the
initial conditions B+�X1 ,0�=B�0��X1� �for X1	0� and
B−�X1 ,0�=B�0��X1� �for X1�0�, with some function B�0��X1�
defined on the whole axis −��X1��, with B�0��X1�→0 as
X1→�. �We have suppressed the dependence on the vari-
ables X2 ,X3 , . . . ;T2 ,T3 , . . . for notational convenience.� In
the region X1	c0T1, the solution to Eq. �36a� with the above
initial condition is given by B+�X1 ,T1�=B�0��X1−c0T1�. This
solution represents an envelope of a group of second-
harmonic radiation waves, moving to the right with the ve-
locity c0. Importantly, the amplitude B+ in this region is not
related to the wobbling amplitude A and so no information
from the core of the kink can reach this region. In the region
0�X1�c0T1, the solution to Eq. �36a� is determined by the
boundary condition instead: B+�X1 ,T1�=A2�0;0�. This result
implies that the moving envelope has the form of a propa-
gating front, leaving B+ flat and stationary in its wake. In a
similar way, on the negative semiaxis we have a front mov-
ing with the velocity −c0 and leaving B−�X1 ,T1� equal to the
constant A2�0;0� in its wake.

The above analysis has two shortcomings. One drawback
is that we have restricted ourselves to groups of radiation
waves with the characteristic length and time scale of order
�−1. A natural question, therefore, is whether variations with
larger space and time scales �e.g., variations on X2 and T2
scales� could not propagate faster than c0. Another latent
defect is that the solutions for B�X1 ,T1� that we have con-
structed will generally be discontinuous along the lines X1
= c0T1. To address both of these issues, we proceed to the
order �4 of the outer expansion where the solvability condi-
tion for the second harmonic gives

i�2�0 D2 + k0 �2�B +
1

2
�D1

2 − �1
2�B

+ iV�k0 D1 − 2�0 �1�B −
1

2
V2k0

2 B = 0.

Eliminating D1B using Eq. �34�, this becomes
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iD2B  ic0�2B − iV�1B −
�kk

2
�1

2B = 0, �37�

where �kk��d2� /dk2� k0
= �4�0

2−k0
2� / �8�0

3� is the dispersion
of the group velocity of the radiation waves. Combining Eq.
�37� with Eq. �34�, we obtain a pair of equations in the origi-
nal space and time variables:

i�tB  ic0 �xB � vk0 B −
�kk

2
�x

2B = 0. �38�

The pair of linear Schrödinger equations �Eq. �38�� govern
the evolution of the radiation amplitudes over times and dis-
tances as large as �−2; if we want to have a description on
even a larger scale, we simply need to include equations
from higher orders of the outer expansion. Solutions of Eqs.
�38� with the boundary conditions B=A2 at x=vt and B

=0 at x= � have the form of slowly dispersing fronts
propagating at the velocities c0 and interpolating, continu-
ously, between A2 and 0. As in our previous description ex-
ploiting the transport equations �Eqs. �36�� and valid on a
shorter space-time scale, perturbations of A2 cannot travel
faster than c0, the group velocity of radiation.

Thus, by introducing the long-range variables B, “un-
tied” from the short-range amplitude A, we have restored the
finiteness of the velocity of the radiation wave propagation.
By introducing the outer expansions, we have also prevented
the breakdown of the asymptotic expansion at large dis-
tances.

VI. DECAY LAW FOR THE WOBBLING AMPLITUDE

Returning to the original, “inner,” expansion �4� and col-
lecting terms of order �3 gives the equation

1

2
D0

2�3 + L�3 = F3, �39a�

where

F3 = ��0�1 − D0D1��2 + ��0�2 − D0D2��1

+
1

2
��1

2 − D1
2��1 − �1

3 − 6�0�1�2 + VD0�0�2

+ VD0�1�1 + VD1�0�1 +
1

2
D2V�0�0 −

1

2
V2�0

2�1.

�39b�

Having evaluated F3 using the known functions �0, �1, and
�2, we decompose the solution �3 into simple harmonics as
we did at O��2�. The solvability condition for the zeroth
harmonic in Eq. �39b� gives D2V=0, which means that V
remains constant up to times t��−3. The solvability condi-
tion for the first harmonic produces

i
2�0

3
D2A + � A2A − V2A = 0, �40�

where

� = 6�
−�

�

sech2 X0 tanh3 X0�5

2
sech2 X0 tanh X0

− 3X0 sech2 X0 + f1�X0��dX0. �41�

Out of the real and imaginary parts of �, the imaginary part is
more important; it can be easily evaluated analytically,

�I =
3�2k0

sinh2��k0 /2�
= 0.046 36. �42�

The real part was computed numerically,

�R = − 0.8509. �43�

Denoting �Ã�a the “natural” �unscaled� amplitude of the
wobbling mode, and recalling that v=�V and At=�2D2A
+O��3�, we express amplitude equation �40� in terms of the
original variables,

iat = −
�0�

2
a2a +

�0

2
v2a + O�a5� . �44�

Equation �44� contains solvability conditions at all orders
covered so far—they arise simply by expanding the deriva-
tive d /dt as in Eq. �6�. Unlike the amplitude equation D1A
=0, which only governs the evolution for times t��−1, and
unlike Eq. �40�, which only holds on the time scale t��−2,
the “master equation” �44� is applicable for all times, from
t=0 to t��−2.

Master equation �44� is the final result of the asymptotic
analysis. All the conclusions about the behavior of the wob-
bler’s amplitude shall be made on the basis of this equation.
We could extend the range of applicability of the master
equation beyond times of order �−2 by continuing our pertur-
bation analysis to higher orders of �. However, corrections to
Eq. �44� obtained in this way would be smaller than the
terms that are already in the right-hand side of Eq. �44� and
would not affect our conclusions based on Eq. �44� in its
present form.

The absolute value of a is governed by the equation

d

dt
a2 = − �0�I a4 + O�a6� . �45�

Previously this equation was obtained using heuristic consid-
erations �21,23,24�. Since �I	0, the amplitude of the wob-
bling is monotonically decreasing with time: a constant
emission of radiation damps the wobbler. Dropping the
O�a6� correction term from Eq. �45�, the decay law is
straightforward:

a�t�2 =
a�0�2

1 + �0 �I a�0�2t
=

a�0�2

1 + 0.08030 a�0�2t
. �46�

When a�0� is small, the decay becomes appreciable only
after long times t�a�0�−2. The decay is slow; for times t
�12.5a�0�−2, Eq. �46� gives a� t−1/2.
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We have verified the above decay law in direct numerical
simulations of the full partial differential equation �1�. �The
details of our numerical algorithm have been relegated to the
Appendix.� As the initial conditions, we took ��x ,0�
=tanh x+2a0 sech x tanh x with some real a0 and �t�x ,0�
=0. After a short initial transient, the solution was seen to
settle to curve �46� with a�0� close to a0, see Fig. 1.

Equation �44� gives us the leading-order contributions to
the frequency of the wobbling:

� = �0�1 −
1

2
v2 +

1

2
�Ra2 + O�a4�� , �47�

with �R�0 as in Eq. �43�. �Note that � is the frequency of
oscillation of the “full” field �, not just of the amplitude a.�
The a2 term here is a nonlinear frequency shift from the
linear frequency �0=�3; as time advances, this term decays,
slowly, to zero. The v2 term comes from the transverse Dop-
pler effect. We could have obtained this term simply by cal-
culating the wobbling frequency in the rest frame and then
multiplying the result by the relativistic time-dilation factor
�1−v2 �which becomes 1− 1

2v2 for small v�.

VII. CONCLUDING REMARKS

In this paper, we have formulated a singular perturbation
expansion for the wobbling kink of the �4 model. Unlike the
previously published singular perturbation theories based on
the Krylov-Bogoliubov and Lindstedt methods, our approach
exploits the existence of multiple space and time scales in
the kink+radiation system. Some aspects of our scheme are
standard to the method of multiple scales; some other ones
�e.g., the appearance of the quasisecular terms� are less tra-
ditional. We particularly emphasize our treatment of the
long-range radiation and the infinite propagation speed para-
dox. The final result of the asymptotic analysis is the ampli-
tude equation for the wobbling mode �Eq. �44��. Using this
equation, we evaluate the nonlinear frequency shift and de-
cay rate of the wobbler.

The coupling of a spatially localized temporally periodic
excitation to radiation modes via a nonlinearity was dis-
cussed previously in several contexts. In particular, Ref. �30�
described the decay of the internal mode of the nonlinear
Schrödinger soliton, in the equation with a general nonlin-
earity. �For rigorous estimates, see, e.g., �31�.� In Ref. �32�,
the dynamics of the soliton’s internal mode was considered
in the nonlinear Schrödinger equation with the parametric
forcing and damping. Next, the authors of Ref. �33� studied
the persistence of a localized linear impurity mode in the
cubic Klein-Gordon equation. �We note that although our Eq.
�1� can also be cast in the form of an equation with an im-
purity potential—by letting �=�0+�—the resulting Klein-
Gordon equation satisfied by � does not fall into the class of
systems covered by the analysis in that paper.� We also men-
tion an earlier paper �34� where a similar problem was con-
sidered for the nonlinear wave equation.

We conclude our study by producing the perturbation ex-
pansion of the wobbling kink in terms of the original vari-
ables:

��x,t� = tanh	1 − 3a2

�1 − v2
�
 + a sech� tanh� ei�0�t−v�� + c.c.

+ 2a2sech2 � tanh� + a2f1���e2i�0�t−v�� + c.c.

+ O�a3� . �48�

Here �=x−vt; the complex function a�t� satisfies ordinary
differential equation �44�, and f1��� is given by Eq. �27�.
Note that we have incorporated two X0 sech2 X0 terms of the
sum �22� into the variable width of the kink. Expansions �48�
is only valid at the length scale �=O�1�; for larger distances
one has to use outer expansions �30� with coefficients deter-
mined in Sec. V.

The first term in Eq. �48� describes a moving nonoscilla-
tory kink with the width decreasing �to the value of �1−v2�
on the time scale t�a−2. The second term describes the
wobbling mode; the third gives the quasistationary correction
to the shape of the kink induced by the wobbling, and the last
term accounts for the second-harmonic radiation from the
wobbler.

The first term in Eq. �48� is manifestly Lorentz covariant.
The other terms can also be cast in the relativistically cova-
riant form if we replace � with � /�1−v2 in sech� and tanh�
�this is correct to the order of v2�, and write aei�0�t−v�� as

a exp�i�0 	1 +
1

2
�Ra2
 t − vx

�1 − v2� .

Here we used Eq. �47� and neglected terms of order a4x and
a5t. �We remind the reader that v and a are considered to
be small quantities, of the same order of smallness.�
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APPENDIX A: NUMERICAL METHOD

In this Appendix we outline some relevant details of the
numerical method that we used to verify predictions of our
theoretical analysis.

Equation �1� was simulated using an explicit finite-
difference scheme on a grid of step size �x=0.1 and �t
=0.05. The simulations were performed on the interval −L
�x�L, where L was chosen large enough to prevent the
kink exiting the domain of integration. �Typical values of L
were of the order of 1000.� We imposed the free-end bound-
ary conditions.

In order to prevent the radiation reflecting back from the
boundaries of the system, damping was introduced near the
edges to absorb the radiation. That is, we added to the �4

equation an absorbing term �̃�x��t, with

�̃�x� =��
x − �L − 100�

100
�4

for x � L − 100,

� x + �L − 100�
100

�4

for x � − L + 100,

0 otherwise.
�

The position x0�t� of the wobbling kink was determined from
the location of the zero crossing. The amplitude of the wob-
bling mode was measured by taking the profile ��x , t�, sub-
tracting the reference kink tanh�x−x0�t��, and assuming the
odd component of what remains to be the first-harmonic
wobbling mode, a sech X0 tanh X0 ei�0�+c.c.. This tech-
nique, of course, furnishes only a first-order approximation
to the amplitude because of the higher order terms in the
perturbation expansion. Interpolation and smoothing were
applied to counter the effects of the discreteness of the x
values and the various oscillations occurring on the fast time
scale.
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